

Smart TSO-DSO interaction schemes, market architectures and ICT Solutions for the integration of ancillary services from demand side management and distributed generation

What does the future look like? A Smart Networks Debate | 31.10.2018

Overview of SmartNet project

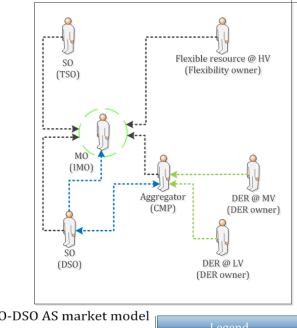
Carlos Madina (Tecnalia) Miguel Pardo (Endesa)

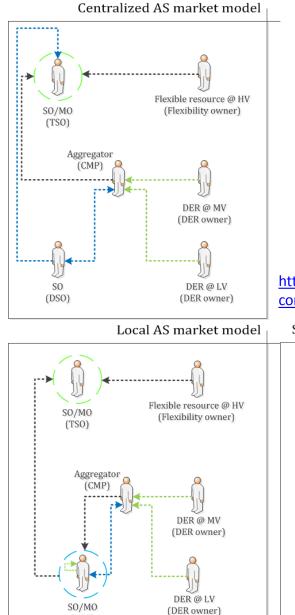
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691405

The SmartNet project

 architectures for optimized interaction between TSOs and DSOs in managing the purchase of ancillary services from subjects located in distribution.

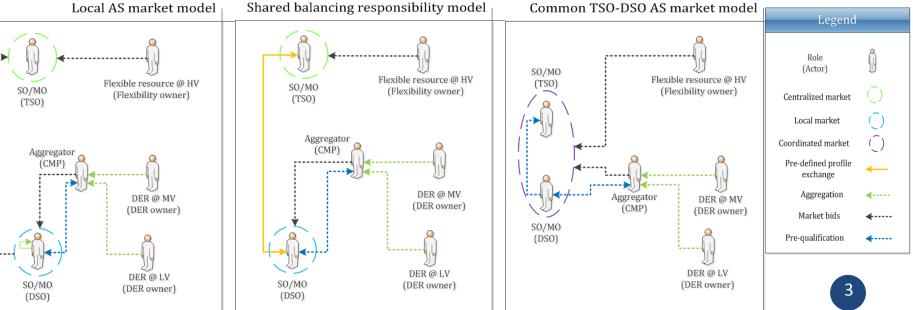
Smart Net

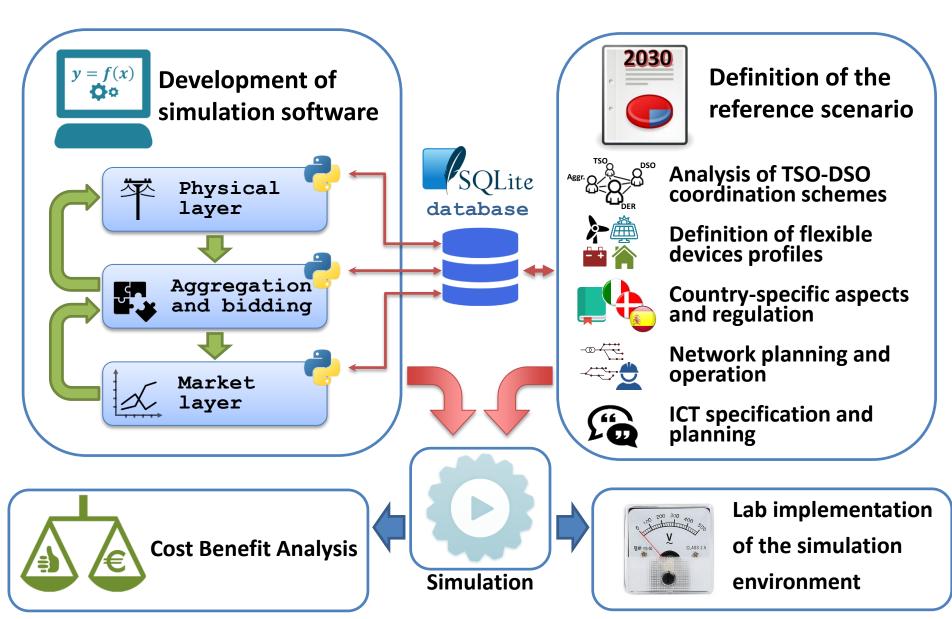

- three national cases (Italy, Denmark, Spain);
- ad hoc simulation platform (physical network, market and ICT)
- **CBA** to assess which TSO-DSO coordination scheme is optimal for the three countries.
- use of **full replica lab** to test performance of real controller devices.
- three physical pilots to demonstrate capability to monitor and control distribution by TSO and flexibility services that can be offered by distribution (thermal inertia of indoor swimming pools, distributed storage of radio-base stations).



TSO-DSO coordination schemes

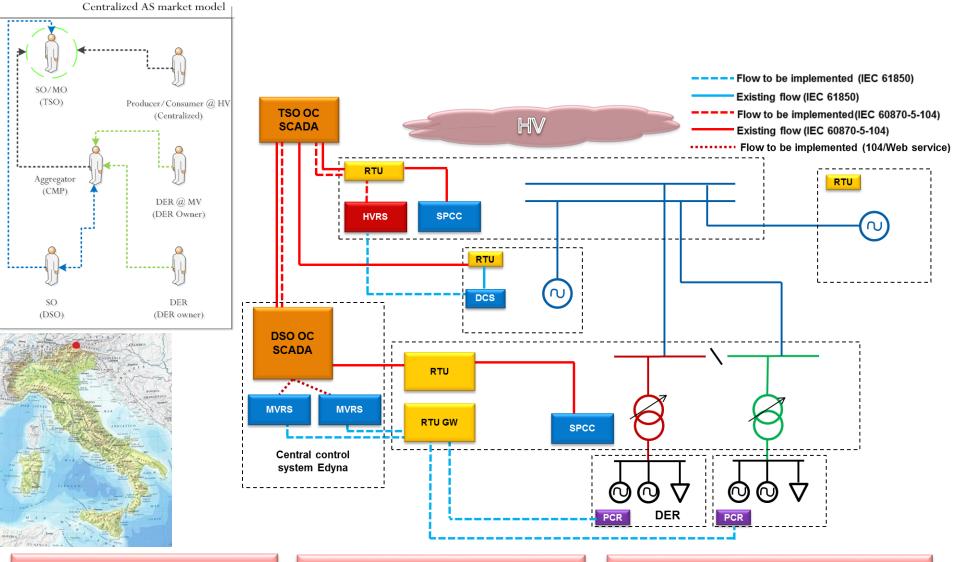
Integrated flexibility market model





- Shared balancing responsibility model
- Common TSO-DSO AS market model
- Integrated flexibility market model

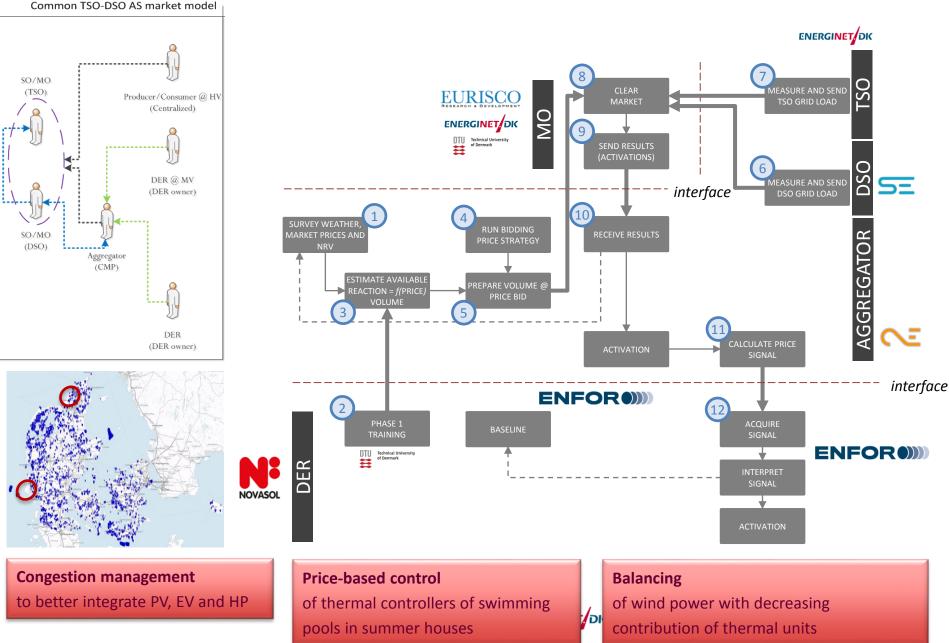
http://smartnet-project.eu/wpcontent/uploads/2016/12/D1.3 20161202 V1.0.pdf


Comparison of the national cases in a simulation environment and laboratory testing

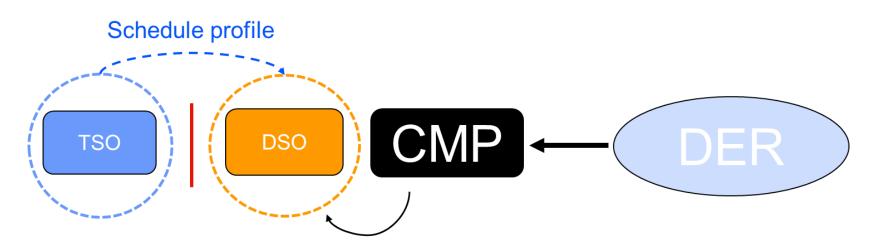
Smart Net

Centralised TSO control in a high-DER area

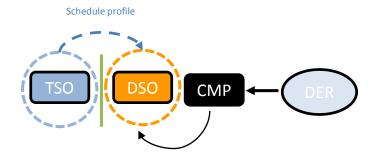
Aggregation of information in RT at TSO-DSO interconnection (HV/MV transformer)


Voltage regulation by generators connected at HV and MV levels

Power-frequency regulation / balancing by generators connected at HV and MV levels

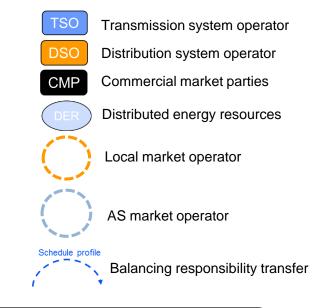

Common TSO-DSO market with pool flexibility

Coordination scheme


Shared balancing responsibility model

Coordination scheme

Shared balancing responsibility model



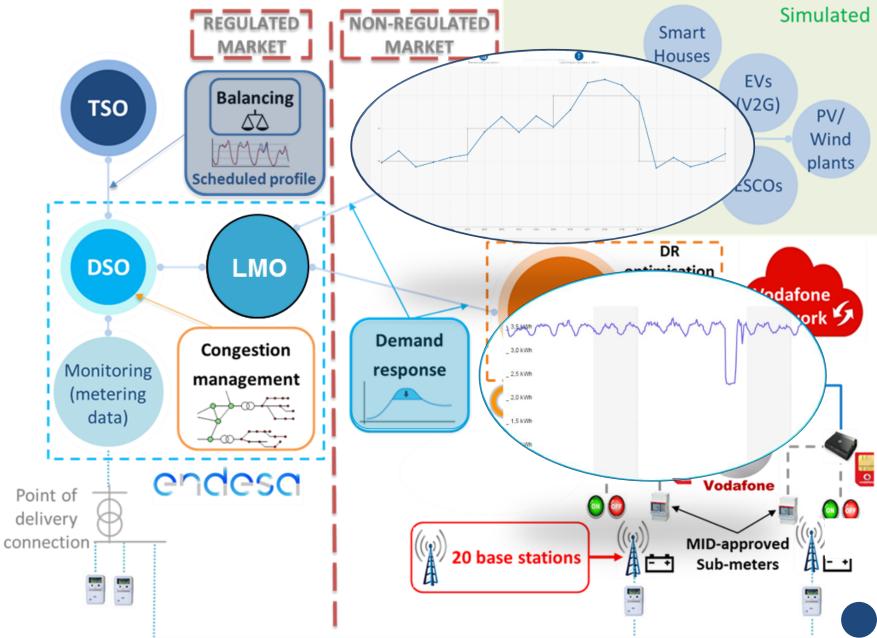
Two different markets Ancillary Service market for resources connected at TSO-grid Local Market for resources connected at DSO-grid

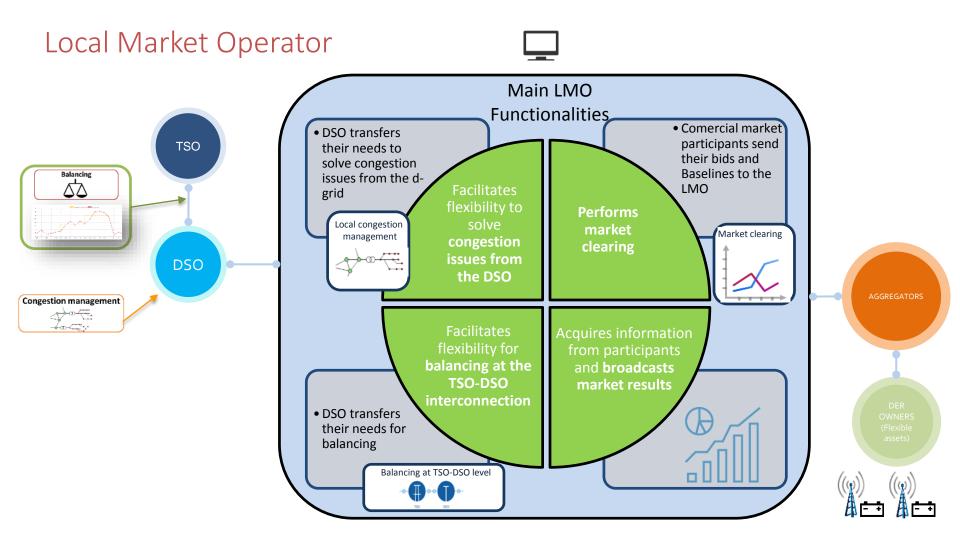
Ancillary services

Balancing in the interconnection point by respecting schedule profile (on behalf of TSO)

Congestion management in the distribution grid

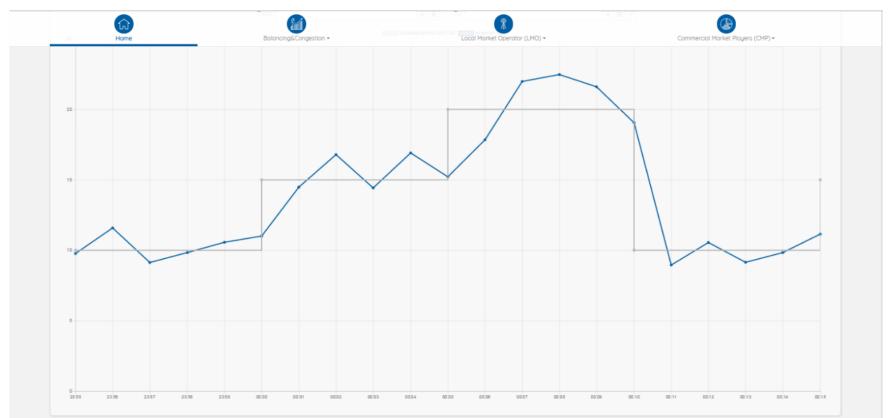
How? By


By using flexibility from DER owners through Commercial market parties

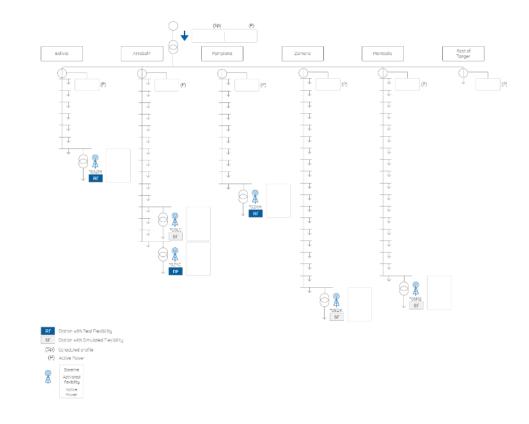

Roles in the project

	Transmission System Operator	Balancing at interconnection level Developing the TSO-DSO interaction			
endesa	Distribution System Operator	By doing congestion management services for itself at local network			
	Commercial Market Party	Virtual nodes emulating other CMP's (Smarthouses, PV's, BSs)			
	Market operator	Local market operation			
€~E	Commercial Market Party	Managing the portfolio of Vodafone radio base stations			
Vodafone	DER owner	Owner of the base stations (flexible resource) Provider of connectivity services to CMP's			
tecnalia) Inspiring Business	Consulant	DR providers			

Smart Net



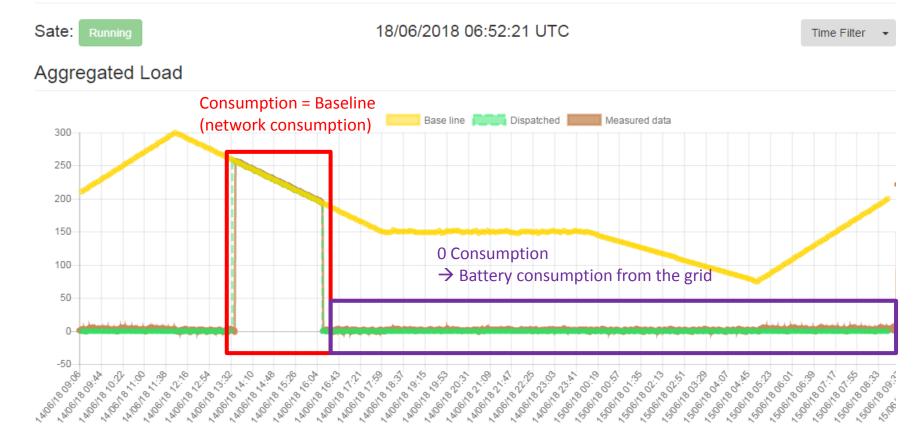
Balancing


- Time plot of active power exchanged at TSO-DSO interconnection points
 - Scheduled profile (MW)
 - Actual active power measured data (MW)
 - 1 plot per each TSO-DSO interconnection point in Pilot C
 - Adjustable time filter (window)

Network status

- Diagram of the distribution network downstream each TSO-DSO interconnection point
 - Voltage levels per node
 - Branch loadings (lines/cables, transformers)
 - Actual delivery of flexibility resources of the Pilot C (VODAFONE and virtual)
 - Updated every 1 minute

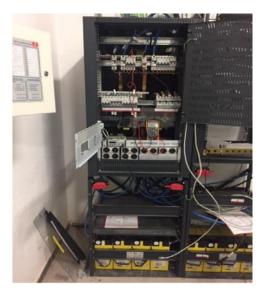
CMP bids

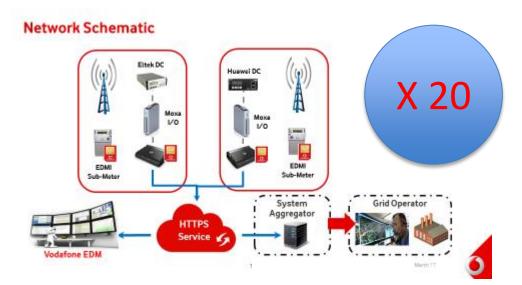

- Table of submitted flexibility bids per CMP per market session and node at each TSO-DSO interconnection point
 - Curtailable/non-curtailable bid blocks
 - Real/virtual CMP

CMP bids

CMP	Market time	Curtailable	Node	Price (€/kWh)	P (kW)	Virtual	^
ONE	2017-02-13T23:55:00Z	no	6	0.32	2.5	No	
TWO	2017-02-13T23:55:00Z	no	10	0.26	7.5	Yes	
V2G	2017-02-13T23:55:00Z	yes	7	0.28	50	Yes	
ONE	2017-02-14T00:00:00Z	no	6	0.32	2.5	No	
TWO	2017-02-14T00:00:00Z	no	10	0.26	7.5	Yes	
V2G	2017-02-14T00:00:00Z	yes	7	0.28	57	Yes	
V2G	2017-02-14T00:00:00Z	yes	7	0.28	-10	Yes	~

VCMP01

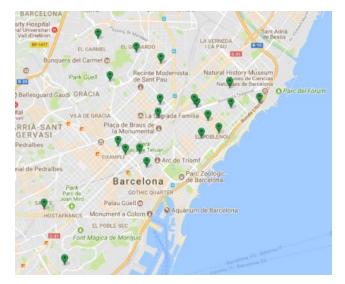

Status – Real Time


110 105 100 95 90 85 80 75 70 19:12:00 20:24:00 21:36:00 22:48:00 00:00:00 01:12:00 01EC 02DA 05RP 18RQ 22FR 60KC • • • • • AVG

BATTERY CHARGE

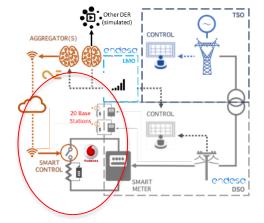
16

Pilot C - Physical Layer SmartNet Vodafone BTS transformation into DER plants.



- **Curtailment principle :** integrate the remote battery test functionality to pilot the radio equipment switch to back up batteries on demand
- Scenario: 20 Radio Base stations equipped with
 - 48V controller SW: 2 brands Eltek and Huawei
 - SNMP connection

.


•

- Mobile Link 4G modem+ Moxa gateway
- 4x12 V 100amph VRLA Batteries
- 1 smart meter with 1mn slot readings

Field test: 90% operational

Smart Net

Feb 2018

Jun 2018: 90 to 100 Kw curtailable

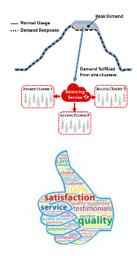
VF Site	Vodaofne Name	PSU Type	Battery Status	Monitoring	Batt Test 🚽	Comment/Actions
618	B_SANTS	Huawei	Good	TBC	Good	Remote meter connectivity in test
621	B_PERU	Huawei	Good	TBC	Good	Remote meter connectivity in test
801	B_ERCILLA46	Eltek	Good	Good	Working	ok
3208	B_PAUCLARIS	Eltek	Good	Good	Working	ok
5297	B_CARTAGENA	Eltek	Good	Good	Working	ok
10048	B_TOLRA51	Huawei	TBC	TBC	TBC	Coms issue on controller
11847	B_MONTSERRAT20	Eltek	Good	Good	Working	ok
26435	B_GRANVIA653	Huawei	Good	Good	Working	ok
28354	B_TRAFALGAR21	Huawei	Good	Good	Working	ok
29424	B_LLULL111	Eltek	Good	Good	Working	ok
52652	B_MALLORCA272	Huawei	Good	Good	Working	ok
52655	B_DIAGONALMAR_U	Huawei	Good	Good	Working	ok
62806	B_SANOFI SYNTHELABO_AVENTIS_VPI	Eltek	TBC	Good	TBC	SNMP issue .
64936	B_CN_MONTJUICH	Eltek	TBC	L4G to repla	TBC	Replace ML4G
70903	B_BAC_DE_RODA_LLULL	Eltek	Good	Good	Working	ok
76469	B_BCNACTIVA	Eltek	Good	Good	Working	ok
77879	B_ARAGÓ_472	Huawei	Good	Good	Good	ok
80263	B_PS_MARAGALL74	Huawei	Good	Good	Good	ok
85405	B_LLACUNA_10	Eltek			Equipme	nt swap required
85407	B_PALLARS_193	Eltek	Good	Good	Good	ok

26 24 22 2 18 16 14			0.20 10.25 10.80 10.85		0.45 10.50	0 1055	11:00 11:05	5 11 10 11	15 11:20 11:2	25 11:90 11:95	1:85 11:40 11:45	1150 1155	15 15 14 13 12 11 10 99
1 0.8	09:05 09:10 09:15 09:20 09:25 09:30 09:35 09:40 09:45 09:50 09:55 10:00		524 S.		0.0280.078	0.0210							
1 0.8 Period	d: [fomto •] 30/01/2018 09/00 to 30/01/2018 12/00	Time zone EuropeiBerlin		Server time zon		1001010	Country	Mer Mar	Auto, cento	8 direct cardle		an ta	
1 0.8 Period			Diagram		Color	Axis	Counter	Min/Mas	Auto. scale	Adjust scale	, camj	mp. to	
1 0.8 Veriod	di (framlo) • (30.01/2018) 09.00 to (30.01/2018) 12.00 20 appliet	Time zone EuropeiBerlin Unit		s 20.		1001010	Counter	Min/Max	Auto scale	Adjust scale			

18

Conclusions. Potential & Benefits of flexibility

In good grid conditions, the unused available capacity backup aggregated from Bases stations can be reused by the DSO for congestion management, and eventually avoiding costly ignition of thermic power plants. Only Vodafone by itself **in the EU could represent 250MW** of dispatchable load.


From the DSO perspective:

- Innovative ways of integrating battery systems into the power grid.
 Fairly compensation for DER and prosumers.
- Avoiding possible reinforcements of the grid. Network upgrades only when needed.
- Helping Balancing services means decreasing tariffs.
- Envisioning different coordination's schemes with different results on the CBA.
- Pushing new technologies and the grid digitalization.
- Contributing to the social welfare of European citizens and activating the circular economy.

SmartNet-Project.eu

This presentation reflects only the author's view and the Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains.

Thank You

Carlos Madina

Contact Information

Affiliation:	Tecnalia
Phone:	+34 667 165 473
Email:	carlos.madina@tecnalia.com

Thank You

Miguel Pardo New Technologies & Innovation Network Technology Iberia Global Infrastructure & Networks

Contact Information

Affiliation: Endesa Distribución Eléctrica Email: miguel.pardo@enel.com